Introduction
This document provides the Atmel ADCs and DMUX users with the different termination techniques to be used with Atmel products. A wide panel of configurations for the analog and clock inputs as well as for the data outputs are described in detail.

The principles of each technique are also presented so that one can eventually choose the proper implementation at the input and output of our products, considering one’s application.

Finally, this document is not exhaustive. Nevertheless, it covers a wide area in terms of IO termination techniques.
Analog Input Termination Techniques

There are many different termination techniques, which can be used to reduce the impact of the transmission line effects. An overview of the Standard Input termination methods, which can be used for Atmel ADCs analog inputs, is provided in the following sections.

Since Atmel ADCs are both single-ended and differential-compatible, both cases will be treated in the next sections.

Single-ended Configuration

The following figure illustrates two input configurations, when the single-ended mode is chosen for the analog input. Here, the common mode of the driving system is assumed to be the same as the one for the analog input of the ADC (Ground).

Figure 1. Configuration without Additional Termination Resistor

Figure 2. Configuration with 50Ω Termination Resistor

The first configuration may well be used in the case of an ADC device featuring an internal 50Ω termination (inside the cavity for the TS83102G0 10-bit 2 Gsps ADC and on package for the TS8388BG 8-bit 1 Gsps ADC).
The second configuration should be used when the differential analog input of the device is not already 50\(\Omega\) terminated.

If the system, which is driving the analog input, needs to be terminated externally, the termination techniques are the following.

Figure 3. Configuration without Additional Termination Resistor

Figure 4. Configuration with 50\(\Omega\) Termination Resistor
In all the previous configurations, it was assumed that there was no need to adjust the com-
mon mode (CM). If the common mode from the driving device is not the same as the one
specified for the analog input of the ADC (GROUND), the user may have to choose between
the configurations illustrated below.

Figure 5. Configuration without Additional Termination Resistor and with Coupling Capacitor

![Diagram for Figure 5](image1)

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.

Figure 6. Configuration with 50Ω Termination Resistor and with Coupling Capacitor

![Diagram for Figure 6](image2)

If the driving system has to be terminated, a 50Ω resistor has to be connected between the
output of the system and the ground, as already described in the previous sections.

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.
Differential Configuration

When the analog input is to be used in differential mode and assuming that the common mode of the driving system is the same as the one for the input of ADC (Ground), the possible configurations are the following:

Figure 7. Configuration without Additional Termination Resistor

Figure 8. Configuration with Differential 50Ω Termination Resistors and with Grounded Middle Point

Figure 9. Configuration with Differential 50Ω Termination Resistors and with Decoupled Middle Point

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.
If the common mode of the driving system is not the same as the one of the input of the ADC, the previous configurations become.

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.
Figure 13. Configuration with Differential 100Ω Termination Resistors and with Coupling Capacitors

![Diagram](image)

Note: The values of the coupling capacitors are given for information only. They may change depending on the input frequency.

The same schemes are valid when the driving system is not terminated. In these cases, the user only has to add the external 50Ω resistors on both outputs of the driving system in the schemes.

The user may only have a single-ended generator to drive the ADC input differentially (preferred way at high sampling rates). In this case, the user still has the opportunity to use a balun. The different configurations in this mode of operation are described in the next section.
Configuration with a Balun

The following section only represents the three general cases illustrating the use of a balun to convert the single-ended signal from the generator into a differential signal for the ADC input. The different cases with an unterminated driving system have not been presented. The user can refer to the schemes given previously for these configurations.

Figure 14. Configuration without Additional Termination Resistor

[Diagram showing configuration without additional termination resistor]

Figure 15. Configuration with Differential 50Ω Termination Resistors and with Grounded Middle Point

[Diagram showing configuration with differential 50Ω termination resistors and grounded middle point]

Figure 16. Configuration with Differential 100Ω Termination Resistors and with Floating Middle Point

[Diagram showing configuration with differential 100Ω termination resistors and floating middle point]
In the case when the clock input of the ADC is not used in ECL levels but is centered around 0V, the configurations presented for the analog inputs (ground common mode voltage), except the AC coupled cases, can be transferred to the input clock.

With a clock in ECL level, the main idea to abide by is to connect the negative clock to the common mode voltage of the positive clock input: -1.3V (ECL) through a 50Ω termination resistor (if not already implemented).

Figure 17. Configuration without Additional 50Ω Termination Resistor

Figure 18. Configuration with 50Ω Termination Resistor
When the clock is used in differential mode with ECL levels, two cases can be taken into consideration:
- the ADC is 50Ω on-package (or internally) terminated;
- the ADC needs an external termination.

Each configuration is described in what follows.

Figure 19. ADC Configuration with External Termination
Figure 20. ADC Configuration with 50Ω On-package (or internal) Termination

Note: Since the ADC is already terminated, the standard termination scheme for the ECL driver (\(V_{TT} = V_{CC} - 2V\) with \(R_t = 50\Omega\)) does not apply here. The Figure 20 is an equivalent termination scheme.

ECL Differential Configuration (DMUX Only)

Figure 21. DMUX Configuration with ECL Differential

Note: Since the ADC is already terminated, the standard termination scheme for the ECL driver (\(V_{TT} = V_{CC} - 2V\) with \(R_t = 50\Omega\)) does not apply here. The Figure 21 is an equivalent termination scheme.
Digital Input Termination Techniques for the DMUX

The termination technique recommended for the DMUX Data inputs is similar to the one used for the DMUX input clock, since all the DMUX input buffers have been designed according to the same architecture.

Figure 22. Digital Input Configuration

Note: Since the ADC is already terminated, the standard termination scheme for the ECL driver \(V_{TT} = V_{CC} \cdot 2 \text{V with } R_t = 50 \Omega \) does not apply here. The Figure 22 is an equivalent termination scheme.
Data Output Termination Techniques

Open Loaded Termination (ADCs)

Figure 23. TS8388Bx and TS8308500 Open Loaded Output Termination

Figure 24. TS83102G0 Open Loaded Output Termination

In the previous configurations, the output level is determined by V_{PLUSD}: ECL/LVDS modes are available (refer to the product data sheets for more information).
75Ω Termination
For TS8388Bx and TS8308500 Only

Figure 25. TS8388Bx and TS8308500 75Ω Termination

![75Ω Termination Circuit Diagram](image1)

50Ω Termination
For the TS8388BX and TS8308500 ADCs

Figure 26. TS8388Bx and TS8308500 50Ω Termination

![50Ω Termination Circuit Diagram](image2)
For the TS83102G0 ADC

Figure 27. TS83102G0 50Ω Termination

In the specific case of the Atmel DMUX, the output buffers need to be terminated with a “VTT + R” termination (see the different schematics) because the DMUX output buffers are in open-emitter configuration.

There are three types of output signals for the DMUX: Data Ready, Digital Output Data and Reference Voltage. All of them have the same behavior against V_{PLUSD} and Swing Adjust, and their associated buffers are similar.

Figure 28. DMUX Differential Data Ready Output Buffer
The only care to be taken to terminate these output buffers properly is to make sure that the output current I_r never exceeds 36 mA.

The relationship between VTT, R, I_r and Vout (output voltage level) is given here:

$$I_r = \frac{V_{out} - V_{tt}}{R}$$
Block Diagram

TS81102G0 DMUX

Figure 31. TS81102G0 DMUX Block Diagram
TS8388B ADC

Figure 32. TS8388B ADC Block Diagram

Figure 33. TS83102G0 ADC Block Diagram
Internal Timing Diagram

DMUX Timing Diagram

This diagram corresponds to an established operation of the DMUX with Synchronous Reset.

Figure 34. DMUX Timing Diagram
The timing diagrams for the TS8388B and TS83102G0 ADCs are similar. Care should only be taken regarding the values of the specified timings (Refer to the corresponding device data sheets for more details).

Figure 35. Data Ready Reset, Clock Held at LOW Level

(TA = 250 ps)

Figure 36. Data Ready Reset, Clock Held at HIGH Level

(TD1 = TC1+TDR-TOD = TC1-40 ps = 460 ps)
ADC and DMUX Testbench

Figure 37. Example of ADC and DMUX Testbench
Atmel Headquarters

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousetet Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems.

ATMEL® is the registered trademark of Atmel.
Other terms and product names may be the trademark of others.

Printed on recycled paper.